

Scottish Health Technical Memorandum 2040

(Part 5 of 6)

Good practice guide

The control of legionellae in healthcare premises - a code of practice

IMPORTANT NOTE LEGIONELLA

SHTM 2040 and the HSC Approved Code of Practice and Guidance (L8) 2000

HSC's Approved Code of Practice came into effect on 8 January 2001. At this time i.e. December 2001 the UK Health Department's Guidance HTM 2040 (SHTM 2040 in Scotland) has not been aligned with the ACOP. Work is ongoing but it is unlikely that HTM 2040 and SHTM 2040 will be updated until late 2002 and launched on a UK basis.

L8 takes cognisance of 'hospitals' but requires considerable interpretation for practical application. The revised UK Health Department Guidance will undertake to address this issue.

In the meantime this version of SHTM 2040 must be read as subordinate to the new ACOP.

Disclaimer

The contents of this document are provided by way of guidance only. Any party making any use thereof or placing any reliance thereon shall do so only upon exercise of that party's own judgement as to the adequacy of the contents in the particular circumstances of its use and application. No warranty is given as to the accuracy of the contents and the Property and Environment Forum Executive, which produced this document on behalf of NHSScotland Property and Environment Forum, will have no responsibility for any errors in or omissions therefrom.

The production of this document was jointly funded by the Scottish Executive Health Department and the NHSScotland Property and Environment Forum.

NHSScotland, P&EFEx, December 1999

Contents

Appendix 1:	The use of sodium hypochlorite solutions for chlorid of cooling water systems in hospitals	orination page 3
Appendix 2:	Questionnaire: Assessment of serviceability of excooling systems	kisting page 8
Appendix 3:	The course of action if an outbreak of legionnaire disease is suspected	' s page 11
Appendix 4:	Sample logbook	page 13
Appendix 5:	Empty times for cooling tower ponds (approx.)	page 48
Appendix 6:	Cooling towers – operational checks	Page 49
References		Page 54

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Appendix 1: The use of sodium hypochlorite solutions for chlorination of cooling water systems in hospitals

- 1.1 Chlorine is an excellent and fast-acting biocide, widely used for controlling microbial growth in cooling waters of wet, evaporative heat exchangers. However, it is essential to note the following four facts, which determine its efficiency during use.
 - a. chlorine has no detergent cleansing powers. It is essential that slime and debris are removed by thoroughly cleansing before chlorine is used, otherwise micro-organisms will survive disinfection as a result of the physical shielding afforded by these slimes;
 - b. chlorine is a highly reactive chemical and will very rapidly combine with organic matter, ammonium compounds and any oxidisable materials (for example ferrous and manganous salts, hydrogen sulphide) present in the water or on wetted surfaces. These reactions will greatly reduce, or even neutralise completely, the disinfecting power. In practice, the level of free available residual chlorine (that is, that available for disinfection) will always be less than that calculated from the dose added, and will decline progressively after addition. For these reasons, chlorine should only be used in systems which are already clean, and the level of free available residual chlorine in the water must always be checked after adding chlorine and allowing it to become completely mixed with the circulating water;
 - c. chlorine should not be used with other biocides, since they may neutralise each other, unless they are known to be compatible;
 - d. the disinfection effect is greater at pH values at or below the neutral pH value of 7.0. Temperature will also affect the efficacy. At pH values above 8.0, the disinfecting power is greatly reduced. This is because the disinfecting activity is mainly brought about by hypochlorous acid (HOCI), which exists in pH-dependent equilibrium with hypochlorite ions (OCI-), in solution. For example, in water at 30°C and pH 7, 71% free available residual chlorine will exist as hypochlorous acid, whereas at pH 9 there will only be 2.4% hypochlorous acid, and 97.6% will be in the form of hypochlorite ion OCI-, which is not as powerful a disinfectant as HOCI (see Figure 1, Effect of pH on chlorination (as HOCI)).

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Sodium hypochlorite and available chlorine

- 1.2 Sodium hypochlorite solutions are the most suitable for chlorinating hospital and other cooling waters. Other chemicals such as bleaching powder ("chloride of lime"), "high-test hypochlorite" or "slow-release tablets" (chloroisocyanurate compounds) are less convenient to prepare or use, and liquefied chlorine gas is too hazardous.
- 1.3 Sodium hypochlorite solutions are sold containing 10-15 percent available chlorine. They contain sodium hydroxide which helps to prevent degradation of the sodium hypochlorite during storage. The commercial preparation has a pH value of about 11 and also contains sodium chloride.

Figure 1: Effect of pH on chlorination (as HOCI)

1.4

1.5

1.6

- It is conventional to express the strengths of chlorine compounds and similar oxidising disinfectants in terms of "available chlorine". This is for analytical convenience, since it provides a common reference of oxidising power for various chemicals used in the disinfecting of water (for example chlorine, hypochlorous acid, hypochlorite ion, chloramines, chlorine dioxide and sulphur dioxide. Chlorine itself (Cl_2) is assumed to be 100 percent available.
- Commercial sodium hypochlorite contains 10-15 percent (w/v) available chlorine, representing a dilution of about 10 to 7 times respectively.
- In tests of treated water for the presence of available residual chlorine, the hypochlorous acid and hypochlorite ion both react by oxidation, so both are

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

measured. This makes it easy to determine the dose of available chlorine added by calculating the dilution (as shown in Table 1).

1.7 This table does not allow for deterioration in strength of the hypochlorite solution, or for chlorine demand within the water and cooling circuit. Hence, the actual concentration of free residual chlorine in the water must always be checked after the dose has been added and properly mixed with the cooling water.

Care in storage and use of sodium hypochlorite solutions

1.8 Solutions must be stored in a dark, cool, well-ventilated place and handled with care according to instructions on the label. They must not be stored or mixed with other chemicals such as acids, ammonia, ammoniacal compounds or cleaning materials because of the risks of evolution of poisonous, chlorine gas and the spontaneous formation of explosive nitrogen trichloride. The solutions are caustic, causing burns to the eyes and skin, are poisonous and will rapidly bleach and rot clothing and woodwork and corrode metals. They must only be placed in glass or plastic containers. When handled, waterproof protective clothing and eyeshields must be worn. Any splashes on the eyes, skin or clothing should be washed off immediately with plenty of cold water. If swallowed, medical advice should be sought immediately. Further information on the safe handling of sodium hypochlorite solutions is given in the Department of Environment's publication, 'Swimming Pool Disinfection Systems Using Sodium Hypochlorite - Guidelines for Design and Operation' (DOE, 1979).

Chlorination of hospital cooling water systems to suppress bacterial growth

Routine chlorination as an alternative to other biocides

- 1.9 If chlorine (or biocide) is/are not added to the cooling-water circuits, legionellae and other micro-organisms may become established because of the favourable operating temperature range and if sufficient nutrients are present. Nutrients may be derived from such sources as contaminated make-up water, dust, leaves, bird droppings and from decaying microbial slime. Low concentrations of free available residual chlorine will prevent growth of legionellae and other micro-organisms, thereby preventing the build up of slimes even if nutrients are present in the water. The concentration of free available residual chlorine needed to suppress microbial growth will depend upon the quality of the water being circulated and the condition of the pipework.
- 1.10 It is essential that the chosen level is maintained since the free chlorine will be absorbed constantly by organic matter and microbial growth in the system

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

– and lost by chemical degradation when the water cascades through the tower packing. Experience has shown that control is achieved when the free available residual chlorine level is maintained constantly at 1-2 mg/l, and to avoid corrosion, a level of 3mg/l is the maximum which should be permitted.

1.11 Where continuous dosing and control is not possible, it may be possible to maintain a similar level of control by dosing intermittently (not less frequently than weekly), to achieve an initial level of 10 mg/l as free available residual chlorine, after allowing for the solution to become completely mixed with the cooling water. If the level falls below 1 mg/l before the next dosing, the frequency of dosing should be increased.

Periodic cleaning and disinfection of the cooling circuit

- 1.12 Because sodium hypochlorite in solution has no detergent or penetrative properties, the aim must be to use thorough mechanical cleaning with brushing and rinsing to remove the slime and debris before the system is disinfected and returned to service. The procedure outline in this SHTM is based upon practical engineering and microbiological experience such as described by Colbourne *et al* (1978).
- 1.13 The procedure recognises that disinfection is a function of both time and concentration. Practical experience in water supply industry for disinfection of pipelines and storage reservoirs, within buildings and in ships, has shown that satisfactory disinfection of cleaned structures can be obtained if the concentration x time product (CT) is at least 50 mg h/l. To achieve this degree of treatment, the dose of available chlorine added, as calculated from Table 1, must be considerably in excess, to allow for chlorine demand. Table 2 indicates the actual dose of chlorine available which may have to be added to achieve a CT product of 50 mg h/l. Experience has shown that when doses of 20 mg/l or less are used, there is a risk of disinfection failure because of the effect of chlorine demand.
- 1.14 Provided that the procedure has been followed correctly, there is no benefit in extending the contact period. Indeed, if the procedure has been applied incorrectly and the level of chlorine is less than that required, increasing the contact time would create conditions where untreated water stagnate in a water system, thereby allowing time for bacterial growth. There is a risk of accelerating corrosion/deterioration of the materials of construction if chlorinated water is left to stand in pipework overnight on a repeated basis.

Table 1: Approximate amounts of commercial sodium hypochlorite solution (10% (w/v) available chlorine) to be added to achieve a given dose

Required dose of	Volume o	of sodium hypochlorite t fluid oz	o be added
available chlorine (mg/l)	ml/m ³	1000 gal	ml/1000 gal
1	10	1.6	45
5	50	8	227
10	100	16	454
50	500	80	2270

Table 2: Examples of the dose of available chlorine which may be needed initially to achieve disinfection to a concentration x time product of 50 mg h/l

Dose to be ad	ded	Typical mea	sured free available (mg/l)	e residual chlorine
As chlorine mg/l	As hypochlorite 10% w/v available chlorine (ml/m ³)	Contact period (h)	immediately after addition	after contact period
50	500	1	40-50	30
40	400	1.5	30-40	25
30	300	2	20-30	15
20	200	3.5	10-15	5
15	150	5	5-10	5

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Appendix 2: Questionnaire: Assessment of serviceability of existing cooling systems

1. Are they registered with local authority?

2. Siting of cooling tower

- a. Is the cooling tower located near a fresh-air intake to an air conditioning or ventilation system?
- b. Is it possible for wind to carry the cooling tower discharge vapour towards the windows of a nearby area or department where there are patients?
- c. Is the siting such that good access is available for maintenance purposes?
- d. Is the siting or tower configuration such that the wind could cause reversal of air flow and spray to carry over from the air-inlet louvres?

3. Cooling tower

- a. Are all the internal parts of the cooling tower readily accessible, or can they be rendered so?
- b. Is corrosion apparent either internally or externally?
- c. Is fouling apparent within the tower?
- d. Is debris, sludge or slime apparent in the tower water?
- e. Are the drift eliminators closely fitting and firmly seated in their support grid?
- f. Is the pack, or any other part of the tower, manufactured from natural materials such as timber?
- g. Are natural rubbers used as seals or gaskets in the spray system or elsewhere?
- h. When operating at full load, is excessive drift visible from the tower discharge?
- i. Is there a coarse strainer located over the outflow pipe from the tower?
- j. Is the drain from the pond piped to discharge above a gulley connected to the foul water drain system?
- k. Is the overflow from the pond piped to discharge above a gulley connected to the foul water drainage system?
- I. Is there a readily accessible pond water sampling point available?

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

- m. Is there a readily accessible water sampling point available to sample tower make-up water?
- n. Is there a strict water treatment programme in operation to control:
 - (i) Total Dissolved Solids (TDS);
 - (ii) pH;
 - (iii) total hardness;
 - (iv) chlorides;
 - (v) scale;
 - (vi) slime;
 - (vii) water treatment chemical/additive levels;
 - (viii) corrosion;
 - (ix) sludge;
 - (x) algae;
 - (xi) micro-organisms?
- o. Is the tower and the entire distribution system cleaned and disinfected at the correct intervals?
- p. Is there a regular maintenance programme and recording/logbook system in operation?
- q. Is a water meter installed on the feed to the make-up valve? Is it accurate?
- 4. The distribution system
 - a. Is the pipework distribution system clearly visible and accessible?
 - b. Is the pipework system easily dismantled for inspection or is it provided with inspection points?
 - c. Is there a risk of water stagnation in the pipeline strainer assembly? (This can occur with duplicate sets if precautions against stagnation are not taken.)
 - d. Is there a risk of water stagnation in the maintenance bypass across the 3-way control valve? (This will occur if the bypass valve is fully closed. Flow should be encouraged or the bypass removed.)
 - e. Where duplicate pumps are installed, do they alternate on a daily basis?
 - f. Are there adequate manual drain points installed, with drain discharge lines piped to discharge above a gully connected to the foul water drainage system?
 - g. Are there adequate, readily accessible water sampling points installed in the distribution system?

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

- h. Is the automatic TDS drain line piped to discharge above a gulley connected to the foul water drainage system?
- i. Are there adequate thermometers and pressure gauges installed to enable the system performance to be monitored and understood?
- j. Is a regular maintenance programme and recording/logbook system in operation?
- k. Does an internal inspection of the condenser and pipework system indicate fouling is present?

Appendix 3: The course of action if an outbreak of legionnaires' disease is suspected

3.1 The nominated person will usually be informed of a suspected case of legionnaires' disease possibly associated with healthcare premises by either the outbreak control team or the local Consultant in Communicable Disease Control (CCDC). If a case is suspected, then the hospital outbreak team will normally work in association with the Directors of Public Health and the Scottish Centre For Infection and Environmental Health and the local CCDC to search for the source of the causative organism. It is essential that systems are not drained or disinfected before samples have been taken. The nominated person's role is an important one – guiding the team to the various water systems within the building and, in particular, to the points from which the samples can be taken. Easy access to these sampling points is essential.

NOTE: The hospital outbreak control team (the team) should include the consultant in communicable disease control.

- 3.2 The investigation will concentrate upon all potential sources of legionella infection, including:
 - a. the domestic hot and cold water distribution system;
 - b. wet spray cooling water systems;
 - c. showers or spray washing equipment;
 - d. drainage systems and traps;
 - e. spas, whirlpool baths or therapy pools;
 - f. humidifiers in ventilation systems;
 - g. cooling coils in air-conditioning systems;
 - h. fountains and sprinklers.

3.3

- To assist in such investigations, the nominated person must be able to provide details of all associated equipment, including all documentation. He/she must assist by advising the investigating team on the extent of the servicing on the site, and by locating taps and sample points.
- The nominated person must also identify the locations of any medical equipment used for dental care, respiratory therapy and within haemodialysis units, etc.

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

- 3.5 Off-site information will also be required, such as whether there have been any local excavation or earthmoving works, alterations to water supply systems, or drainage systems or any other factors which may have a bearing on the site.
- 3.6 The address and telephone number of the nearest weather station will be required this is likely to be a local airport, university or college department.
- 3.7 The team is responsible for identifying the cause of infection, and will advise on cleaning, disinfection, any modifications, and long-term control measures.

NOTE:

Reference Laboratory – Legionella Scottish Legionella Reference Laboratory Stobhill Hospital NHS Trust Glasgow G21 3UW Tel 0141–201–3000 Fax 0141–201-3887.

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Appendix 4: Sample logbook

	Logbook No
Establishment	
Site	
Installation	Evaporative cooling water system
	Serving

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Version 1.0: December 1999

Establishment	Logbook
Site	Page No 1
Installation	Serial No 1
	Frequency

Typical evaporative cooling tower system arrangement

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Establishment	Logbook
Site	Page No 1
Installation	Serial No 2
	Frequency

Operation

Water is circulated to the condenser at a constant temperature of 25°C. This temperature is achieved by modulation of the 3 way control valve (item 5) missing proportions of water from the cooling tower or bypass line as controlled by the detector (Item 8).

Schedule of commissioning data

Cooling	tower rating	kW
Air on	28°C db	21°C wb
Air volur	ne	m3/
Water te	emperature on	°C
off	-	°C
Water fl	ow rate	l/s

Circulating pump

Flow rate	l/s
Static pressure	bar

Refrigeration condenser

Rating	kW
Water on	°C
off	°С
Pressure drop	kPa

System volume

Pipework distribution	litres
Cooling tower	litres
Total volume	litres

Plant operating times

Hours per dayhrs	
onhrs	
offhrs	
Days per weekdays	
Weeks per yearweeks	
State normal operating season	

Air off......°C db......°C wb Pressure difference......Pa

Suction pressure......bar Discharge pressure......bar

from _____ to ____

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Version 1.0: December 1999

© Borders General Hospital NHS Trust on behalf of NHSScotland Property and Environment Form

System circulation time

<u>Total volume in litres</u> =mins* Pump flow rate I/s x 60

* Due to short-circuiting within the pond, a complete change of pond water cannot be guaranteed within this theoretical period, which should be used as a guide only.

Total dissolved solid (TDS) control

Desired control level	μ s/m²
Method of control	for example conductivity control

Chemical treatment system A

Chemical formulation	
Holding tank volume	litres
Pump duty	
Method of control	<u> </u>

Chemical treatment system B

Chemical formulation	
Holding tank volume	litres
Pump duty.	/hr @ kPa
Method of control	

Chemical treatment system C

Chemical formulation	
Holding tank volume	litres
Pump duty	/hr @kPa
Method of control	<u> </u>

Chemical treatment system D

Chemical formulation	
Holding tank volume	litres
Pump duty	kPa
Method of control	-

Chemical treatment system E

Chemical formulation	
Holding tank volume	litres
Pump duty	
Method of control	

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Establishment	Logbook
Site	Page No 2
Installation	Serial No 1
	Frequency W & M
	Serial No 1 Frequency W & M

Evaporative cooling system operational checks

(W = weekly, M = monthly)

Note as applicable: S = satisfactory; N/S = not satisfactory Record defects over page

Item	Design	Frequency	Date of inspection							
	Data									
1. Refrigeration M/C:										
a) water in/out °C		w								
b) temp. diff. °C		w								
c) current drawn A		W								
d) pressure drop kPa		W								
e) observations										
2. Condenser water pump										
a) outlet press bar		W								
b) suction press bar		w								
c) diff. pressure bar		w								
d) duty/standby		w								
e) hours run Pump 1		w								
f) hours run Pump 2		W								
g) full load current A	r	w								
h) observations										
3. Control valve (range 0-10)										
a) valve position (0-10)		w								
b) temp. from tower °C		w								
c) temp. at detector °C		w								
d) manual operation		W								
e) observations		W								
Inspector's signature										

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Item	Design Data	Frequency	Da	te of	[:] ins	pect	ion		
4 Towar	Dala								
4. lower		14/							
b) ball valve operation		VV \//							
c) fan/snood r n m		w							
d) fan current		w							
e) air on °C wh		w							
f) fan operation check		Ŵ							
g) casing check		w							
h) moisture carry over		w							
i) overflow check		w							
i) strainer check		Ŵ							
k) pond heater current		w							
operational check									
I) sump current drawn		w							
m)drift eliminator		Μ							
check									
n) pack check		М							
o) discharge ducting		М							
check (if applicable)									
p) NR damper check (if		М							
applicable)									
q) spray/spare/trougn	K	M							
r) inlet louvre check		м							
s) observations		141							
5 Circulation system									
a) strainer pressure		м							
b) drains		w							
c) valves		Ŵ							
d) vents		w							
e) pipework		w							
f) leaks		w							
g) flow to tower (with 3		M							
way valve fully									
open)									
h) flow to system (with		М							
3 way valve fully									
i) flow monitor check		VV							
J) observations		vv						 	
Inspector's signature									

Version 1.0: December 1999

Date	Observations	Noted	Diagnosed cause of defect	Initials

S

Date	Observations	Noted	Diagnosed cause of defect	Initials
		4		
				<u> </u>

Establishment	Logbook
Site	Page No 3
Installation	Serial No 1
	Frequency

Operational tests on make-up water from evaporative cooling systems

Note as applicable: S = satisfactory; N/S = not satisfactory

Name of water undertaking	Tel No
Name of water treatment contractor	Tel No

Control parameters

Typical water usage	litres
Normal tolerances ±	litres
Total hardness	
Conductivity	

рН	 	
Chlorides	 	

Where installed, name of water softener device.....

D	ate	Water meter reading	Water used litres	Total hard- ness	Conduc- tivity	рН	TDS	Obser- vations	Initials
	X								

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Date	Observations	Noted	Diagnosed cause of defect	Initials

SitePage No 4 InstallationSerial No 1 Erequency Detail sheet for water treatment programme associated with evaporative cooling. Name of water treatment contractorDate Date	
InstallationSerial No 1 Frequency Detail sheet for water treatment programme associated with evaporative cooling. Name of water treatment contractorDate Cooling tower duty kW	
Frequency Detail sheet for water treatment programme associated with evaporative cooling. Name of water treatment contractorDate Cooling tower duty kW	
Name of water treatment contractorDateDate	
Design operating conditionsl/s On°C Off°C Plant operating periodhrs/day days/week weeks/year Total system water capacitylitres Evaporative ratel/s Peak daily outputlitres Pre-treatment plant Bleed system control method (for example conductivity control)	

Control parameters:

Conductivity	
TDS	typical
Chlorine	typical
pH	typical
Chlorides	

Selected chem	ical treatment			
Chemical	Initial dose	Maintenance	Dosing equipm	nent
formulation		dose	Dilution rate	Flow rate
A				
В				
С				
D				
E				
F				

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

	Type of test Remarks									s otherwise stated.		Remarks			
	*Units									of CaCO ₃ unles		er ml			
vle below	units	Max								.p.m) in terms o		ount organisms po			
products listed in tat	Contro	Min								wn in mg/litre (p		General bacterial c			
teria for proprietary	reatment (state A,	<u>ر</u> م م با								trations are sho	vity				
Chemical treatment cri	System water T		Scale controller	Corrosion inhib.	Sludge dispensive	Hd	Methyl orange alkalinity M	TDS	Biocide	* Criteria concen	Table 3 Biological acti	Bacterial procedure			

Version 1.0: December 1999

© Borders General Hospital NHS Trust on behalf of NHSScotland Property and Environment Form

Establi Site	shment							.Logbook ^{>} age No 5 èerial No 1	
Operat evapor	ional tests on ative cooling :	water quality fo		:		Ë	equency		
Name Note a State c	of water trea is applicable: defect over p	tment contract S = satisfacto age.	or ry; N/S = not	satisfactory					
Date	System wa	ter test ppm		Total ALK	System	Chemical dosed A, B,	Dosing	Initials	
	Scale controls	Corrosion inhibitor	Sludge dispensiv	or pu	s or N/S	∪, ⊔, ⊑, or ۲, state chemical and litres	equipment operation S or N/S		
						いろ			
Dosi	ng system ol	berational chec	cks Frequ	ency - week	<u>></u>]

Item	Date	e of ir	ispec	tion			1
1. Chemical treatment system A							
a) contents of holding tank (litres)							
b) volume of chemical used (litres/day)							
c) top up holding tank and record new							
volume (litres)							
d) pump operational check							
e) control device check							
t) pump duty check							
g) observations S or N/S							
2. Chemical treatment system B				(
a) contents of holding tank (litres)							
b) volume of chemical used (litres/day)							
c) top up holding tank and record new							
volume (litres)							
d) pump operational check							
e) control device check							
f) pump duty check							
g) observations S or N/S							
3. Chemical treatment system C							
a) contents of holding tank (litres)							
b) volume of chemical used (litres/day)							
c) top up holding tank and record new							
volume (litres)							
d) pump operational check							
e) control device check							
f) pump duty check							
g) observations S or N/S							
Inspector's signature	1	1					1

Date	Observations	Noted	Diagnosed cause of defect	Initials
				ļ
				<u> </u>
-				
				1
				1
-				

Detects S	cneaule			
Date	Observations	Noted	Diagnosed cause of defect	Initials
				D

R

Establishment		Logbook
Site	Pa	age No 6
Installation	Sei	rial No 1
	Frequency	Weekly

Maintenance sheet for cooling tower fans

When maintenance task is satisfactorily completed the operative is to tick the box opposite. If task cannot be completed due to mechanical failure, insert a cross in the box opposite and note defect on the observation sheet

Job Description	Date of inspection						
 Cooling tower No							
Engineer's signature							

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Version 1.0: December 1999

Date	Observations	Noted	Diagnosed cause of defect	Initials
				1
			*	<u> </u>
				<u> </u>
				<u> </u>
		1		

S

Establishment		Logbook
Site		.Page No 7
Installation		Serial No 1
	Frequency	3 monthly

Maintenance sheet for cooling tower 3 monthly tasks

When maintenance task is satisfactorily completed the operative is to tick the box opposite. If task cannot be completed due to mechanical failure, insert a cross in the box opposite and note defect in the observation sheet

Job Description	Date of inspection						
 Cooling tower No a) isolate electrical supply to tower b) isolate condenser water pumps and/or valve to tower being serviced. 				0			
 c) remove fan guard, wipe clean, inspect for rust spots, rub down apply rust inhibitor and paint. When replacing guard lightly grease holding bolts. 							
 d) clean fan casing, impeller, housing, holding bolts and framework. Inspect all steelwork for rust spots, rub down, apply rust inhibitor and paint. Apply protective grease to bolts and parts exposed to vapour. 							
e) remove dirt eliminators, brush and wipe clean, apply hose as necessary. Inspect for signs of fouling. If fouling is present apply chemical dispersant and remove. Similarly clean eliminator support							
grid and housing. Inspect for signs of rust, rub down, apply rust inhibitor and paint.							
When complete replace eliminators taking care to place the correct way up, to align and seal to prevent moisture by-passing.							
Engineer's signature							

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Version 1.0: December 1999

Version 1.0: December 1999

Date	Observations	Noted	Diagnosed cause of defect	Initials
				ļ

Date	Observations	Noted	Diagnosed cause of defect	Initials

Establishment		Logbook
Site		Page No 7
Installation		Serial No 2
Maintenance sheet for cooling tower	Frequency	3 monthly

Maintenance sheet for cooling tower 3 monthly tasks

When maintenance task is satisfactorily completed the operative is to tick the box opposite. If task cannot be completed due to mechanical failure, insert a cross in the box opposite and note defect in the observation sheet

Job Description		Date of inspection						
 j) clean ball valve assembly and adjust operating level as necessary. 				Ć				
 k) inspect immersion heater for signs of leaks and repair as necessary. 			\mathbf{O}					
Clean immersion heater coil and use chemical dispersant to remove any fouling.								
Inspect weather proofing on all trace heating and insulation, and repair where damaged.								
Check tightness of all cable terminations.								
Engineer's signature								

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Date	Observations	Noted	Diagnosed cause of defect	Initials
		4		
				<u> </u>

Establishment		Logbook
Site		Page No 7
Installation		Serial No 3
	Frequency	3 months
Maintenance sheet for cooling tower	and as	necessary
3 monthly tasks		

When maintenance task is satisfactorily completed the operative is to tick the box opposite. If task cannot be completed due to mechanical failure, insert a cross in the box opposite and note defect in the observation sheet

1. Fan assembly 1. Fan assembly a) drain oil from gear box and replace using oil type 1. Fan assembly 2. Ball valve 1. Fan assembly a) replace ball valve washer and readjust as necessary each 1. Fan assembly	
1. Fan assembly a) drain oil from gear box and replace using oil type 2. Ball valve a) replace ball valve washer and readjust as necessary each oltermete 2 menthe	
2. Ball valve a) replace ball valve washer and readjust as necessary each eltermete 2 menths	
a) replace ball valve washer and readjust as necessary each	
alternate 3 months.	
3. Seasonal cleaning & disinfection	
 a) carry out disinfection of make-up tank and distribution pipework as required by Code of Practice. Record quantity and sodium hypochlorite used for disinfection (litres). Record residual chlorine level after 1 hour standing duration (p.p.m.) b) carry out disinfection of tower and distribution system as required by Code of Practice. Record quantity of sodium hypochlorite used for disinfection (litres). Record residual chlorine level after 4 hour circulation period (p.p.m.). c) bring system back into service. 	
Engineer's signature	

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Version 1.0: December 1999

Date	Observations	Noted	Diagnosed cause of defect	Initials
				1
			*	<u> </u>
				<u> </u>
				<u> </u>
		1		

Establishment		Logbook
Site	Pa	age No 8
Installation	Se	rial No 1
	Frequency	months

Maintenance sheet for condenser water circulation system monthly tasks

When maintenance task is satisfactorily completed the operative is to tick the box opposite. If task cannot be completed due to mechanical failure, insert a cross in the box opposite and note defect in the observation sheet

Job Description	Date	e of ir	ispec	tion		
1. Condenser water circulation Pump No 1						
a) isolate electrical supplies locally.						
 b) remove guards, inspect for rust and make good as necessary. 						
c) wipe clean motor, shaft, pump casing and parts as appropriate.						
d) check all bearings and adjust as necessary.						
e) lubricate pump bearings with shots of grease type						
 f) check belt drives for correct alignment and tension and adjust as required. 						
 g) check pump glands for excessive leakage, adjust or replace as required. 						
 h) clean drip cups and rod through as required. 						
 i) check tightness of all holding down bolts and anti-vibration mountings. 						
Realign if required.						
j) bring pump back into service.						
Engineer's signature						

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Job Description	Date	of ir	nspec	tion	[
2. Condenser water circulation Pump No 2							
Where dual pump installations exist draw up additional maintenance sheet and implement maintenance function.							
3. Dosing pump for chemical A							
 a) check pump bearing and where not sealed for life oil or grease to manufacturers instructions. 				(5	
 b) disconnect pump discharge and run for set time discharging contents into measuring container to check duty remains satisfactory. 							
 c) tighten pump holding down assembly on top of chemical treatment tank. 							
4. Dosing pump for chemical B							
Where more than one dosing is installed draw up maintenance sheets for each system and implement maintenance function.							
5. Strainer							
a) remove strainer basket, insert standby basket, bring service back on line, empty and clean basket.							
6. Pressure gauges and thermometers							
a) clean all glass dial gauges and mercury in glass stem thermometers to ensure clarity of reading.							
Engineer's signature							

Date	Observations	Noted	Diagnosed cause of defect	Initials
				<u> </u>
				<u> </u>
				<u> </u>

Establishment		Logbook
Site		Page No 8
Installation	S	erial No 2
	Frequency	6 monthly

Maintenance sheet for condenser water circulation system – 6 monthly tasks

When maintenance task is satisfactorily completed the operative is to tick the box opposite. If task cannot be completed due to mechanical failure, insert a cross in the box opposite and note defect in the observation sheet

Job Description	Date of inspection					
 1. Valves a) clean all valve spindles of dust or deposits. b) operate valve through two full cycles from fully closed and reset to precise original position. c) inspect gland and adjust gland nut as required. Repack gland if required. d) lubricate valve as required by manufacturer. 			S	0		
2. 3-Way control valve						
 a) check valve spindle for signs of wear and distortion. Replace as necessary. b) check glands and adjust as 						
necessary.						
 c) check table terminals and tighten or check pneumatic tubing and tighten nipples if necessary. 						
3. Automatic air vents						
a) isolate feed to AAV, dismantle, remove float and clean float and needles. Clean ports and needle seats.						
b) blow through discharge lines.						
Engineer's signature						

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Job Description	Date	e of ir	nspec	tion			
 4. Drains and sample points a) open all drain lines and sample points to blow clear. Check discharges to ensure lines freely drain over gully to waste. 							
5. Strainer							
a) remove flow monitor, inspect and operate paddle. Chemically clean and replace.b) check and tighten cable terminals.					C	5	
6. Flow monitor							
 a) gain access to NRV clack and inspect for freedom of operation scoring or erosion. Renew disc if required and reassemble. 				0			
7. Conductivity cell							
a) remove conductivity cell from pipeline, inspect and clean as recommended by manufacturer.							
8. Thermometers							
 a) check all thermometers pockets for thermoconductivity paste and replenish as required. 							
Engineer's signature							

 Opservations	Noted	Diagnosed cause of defect	Initials
	1		

Version 1.0: December 1999

R

Establishment	Logbook
Site	Page No 8
Installation	Serial No 3
	Frequency yearly
Maintenance sheet for condenser water	or as necessary
Circulation system yearly of as necessary	

When maintenance task is satisfactorily completed the operative is to tick the box opposite. If task cannot be completed due to mechanical failure, insert a cross in the box opposite and note defect in the observation sheet

Job Description Date of inspection						
 1. Internal pipe inspections a) when system is drained for seasonal cleaning, remove inspection flanges and note condition of pipe interior. 						
 2. Pressure gauges a) remove pressure gauges and recalibrate or exchange for a recalibrated gauge. 						
3. Condenser						
 a) remove end plates. Clean off any signs of corrosion from tube plates and treat as recommended by manufacturer. b) rod through all tubes with the rodding brush and apply hose to clean out debris. c) reassemble and put into service. 						
 4. Thermometer pockets a) remove all thermometer pockets and inspect for fouling. If required, chemically clean pocket. b) replace pocket, repack with thermoconductivity paste and insert thermometer. 						
Engineer's signature						

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Date	Observations	Noted	Diagnosed cause of defect	Initials
				<u> </u>
·				

Version 1.0: December 1999

© Borders General Hospital NHS Trust on behalf of NHSScotland Property and Environment Form

Appendix 5: Empty times for cooling tower ponds

(approx.)

Appendix 6: Cooling towers – operational checks

6.1 These tasks should be carried out weekly. Usually, visual inspection is sufficient.

Evaporative cooling system operational checks

- 6.2 The specimen logbook, page 2, details the checks and tasks to be covered. It is expected that the engineer will exercise discretion (as to the degree of involvement) where weekly charts are indicated. The tasks listed entail observation from close inspection and do not require dismantling or draining of plant, etc. (More detailed examination is covered under routine maintenance.) For instance, a "pond inspection" on a weekly basis is intended to be a visual inspection of the pond to establish the following:
 - a. correct operating water level;
 - b. water appears clean and free from slime, with no foreign matter floating or submerged.

Make-up water operational checks

6.3 Readings and tests as shown in the logbook, page 3, should be carried out on a weekly basis. The readings are required to ensure that the minimum amount of water is used, and that water temperature is maintained to reduce the risk of microbial growth and to suit the chemical treatment programme.

System water operational tests

6.4 The tests given in the logbook, page 5, should be carried out weekly to ensure proper control of the water treatment programme so as to restrict the development of *Legionella pneumophila*, the accumulation of scale, slime, sludge, etc.

Equipment checks

6.5

Each item of equipment should be checked using the senses of sight, touch, smell and hearing as applicable. This type of check will complement the readings taken from instruments and will allow comprehensive details to be recorded on the log sheet. Where such checks show that corrective measures can be carried out quickly and efficiently at the time of the inspection (using minimal tools and equipment), this should be done. Where

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

the checks identify more time-consuming remedial action, with the use of specific plant and materials, the work should be carried out at the earliest opportunity following inspection. A preventive planned maintenance scheme should avoid the need for unforeseen, substantial maintenance tasks being identified through the weekly inspections.

- 6.6 Typical observation checks are listed below:
 - a. pond:
 - check water level is properly marked on the pond and is maintained;
 - (ii) check overflow is clear;
 - (iii) check ball valve flow and proper shut-off;
 - (iv) check water for leaves and foreign matter;
 - (v) check for slime and signs of scaling;
 - (vi) check for leaks;
 - (vii) check for signs of corrosion, for example rusting, algae blistering, oxidisation, etc.
 - (viii) check clear visibility of sump;
 - (ix) check screen in pond and clean as necessary;
 - (x) check drains are free;
 - (xi) check discharge from pack for uniformity;
 - b. tower casing:
 - (i) check rattles and vibration;
 - (ii) check the casing for water and air leaks while in operation;
 - (iii) check for drift from tower discharge;
 - (iv) check for signs of corrosion, for example rusting, blistering, oxidisation, etc.
 - (v) check paint or protective coating for damage;
 - (vi) check louvres and screens for leaves, growth and other deterioration;
 - tower intervals:
 - (i) check pack for correct location, alignment, seal and absence of distortion;
 - (ii) check pack for condition and signs of deterioration, scale, algae slime, poor water flow/coverage;
 - (iii) check casing and inside structure for signs of corrosion, rusting, blistering and oxidisation;

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

- (iv) check sprays, sparge or troughs for efficient operation and uniformity of distribution of water over pack when operating;
- (v) check drift eliminator for correct location, alignment and lack of distortion and seal;
- (vi) check drift eliminator for signs of deterioration, scale, algae, slime or blockage;
- d. cooling tower fan:
 - (i) check for noise vibration and free running;
 - (ii) check drive method where applicable for correct adjustment, alignment and operation;
 - (iii) check cage, guard and screen for corrosion and proper location and fixing;
 - (iv) check motor full-load current and record;
 - (v) check condition of impeller, shaft, housing, scroll, shaft, bearing and supports, etc;
- e. sump immersion and trace heating:
 - (i) check power available and isolator position;
 - (ii) check operation manually;
 - (iii) check thermostat setting;
- f. pipework distribution system:
 - (i) check for signs of leaks;
 - (ii) check for signs of corrosion;
 - (iii) check for vibration;
 - (iv) vent all air cocks and check all AAVs and discharge lines;
 - (v) < check all drains are operable and gulleys are clear;
- g. manual valves and cocks:
 - (i) check all valve glands for leaks or solid deposits collecting around spindle;
 - (ii) check for the correct setting of all valves (fully open, closed, partially open, etc.);
- h. automatic 3-way control valves and associated equipment:
 - (i) check 3-way control valve fully operational;
 - (ii) check 3-way valve maintenance bypass valve is closed save for bleed facility;
 - (iii) check for positive shut-off as applicable;
 - (iv) re-establish automatic control, calibrate detector and set to design temperature;

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

- i. strainer:
 - (i) compare system flow to bypass flow and assess if strainer might be partially blocked;
 - (ii) check that spare strainer basket is available;
- j. circulating pump:
 - (i) check each pump for smooth running and freedom from noise and vibration;
 - (ii) check bearings from grease and high temperature;
 - (iii) check shaft and drives for signs of wear;
 - (iv) check belts and pulley for correct alignment and tension belts;
 - (v) check guards for proper fixing and absence of vibration and corrosion;
 - (vi) check clearance of guards for free operation;
 - (vii) check glands for excessive leakage and check drip lines are clear and free draining to gulley;
 - (viii) operate stop cocks and auto-change facility as applicable;
 - (ix) operate each pump via on/off/auto switch to prove operation;
 - (x) measure suction and discharge pressures, record and compare with design. Increase in pressure difference will indicate reduction in flow, possibly caused by strainers or condenser tube fouling. Note observations;
 - (xi) record hours run for each pump;
 - (xii) check pump mounting condition and effectiveness;
 - (xiii) check foundations, securing bolts and pump alignment with pipework and assess any movement creeping;
- k. condenser:
 - (i) vent condenser via air cocks to relieve any air pockets;
 - (ii) measure condenser water inlet and outlet pressures and record;
 - (iii) record condenser pressure differential and compare with design and flow as measured in (h) above and assess any fouling;
 - (iv) record water entry and leaving temperatures;
 - (v) record refrigeration machine full-load current associated with water temperature difference and compare with manufacturer's chart to assess load-cross check with flow and temperature difference readings taken;
- I. flow monitor
 - (i) stop/start pumps and check free operation and ready switching of flow monitor;

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

- (ii) check refrigeration machine shuts down on no-flow;
- (iii) check action of "delay-on" timer to refrigeration circuit and others as applicable;
- m. dosing system(s) for each system:
 - (i) check contents of drum(s) and note volume remaining;

NOTE: Checking frequency will depend on dosing rates and capacity for the chemical containers/drums, for example, small containers may be exhausted in as little as three days.

- (ii) top up drum(s) with water treatment chemicals and record new volume of contents;
- (iii) manually operate dosing pump(s) and check for correct operation and freedom from vibration, etc;
- (iv) manually override controller(s) to cycle pump(s) automatically, check controller calibration, reset and leave under automatic control;

NOTE: Initially while plant is settling down, thereafter less frequently.

- (v) check dosing pump(s) duty/calibration manually;
- (vi) check setting and operation of any timers.

References

NOTE:

Where there is a requirement to address a listed reference, care should be taken to ensure that all amendments following the date of issue are included.

Publication ID	Title	Publisher	Date	Notes		
Acts and Regulations						
	The Building (Scotland) Act	HMSO	1959			
	Clean Air Act	HMSO	1993			
	Consumer Protection Act	HMSO	1987			
	Electricity Act	HMSO	1989			
	The Food Safety Act	HMSO	1990			
	Registered Establishments (Scotland) Act	HMSO	1998			
	The Water (Scotland) Act	HMSO	1980			
	Health and Safety at Work etc Act	HMSO	1974			
SI 346	The Active Implantable Medical Devices Regulations	HMSO	1992			
SI 2179 & 187	The Building Standards (Scotland) Regulations	HMSO	1990			
	The Building Standards (Scotland) Regulations: Technical Standards Guidance	HMSO	1998			
SI 1460	Chemicals (Hazard Information and Packaging for Supply) Regulations (CHIP2)	HMSO	1997			
SI 3140	Construction (Design and Management) Regulations	HMSO	1994			
SI 437	Control of Substances Hazardous to Health Regulations (COSHH)	HMSO	1999			
SI 635	Electricity at Work Regulations	HMSO	1989			
SI 1057	Electricity Supply Regulations	HMSO	1988 (amd 1990)			
SI 3080	Electromagnetic Compatibility (Amendment) Regulations	HMSO	1994			
SI 2372	Electromagnetic Compatibility Regulations	HMSO	1992			

IMPORTANT NOTE: See front cover for status of SHTM 2040. SHTM 2040 must be read in conjunction with and as subordinate to HSC ACOP L8.

Version 1.0: December 1999

 \leq

Publication ID	Title	Publisher	Date	Notes
	Food Safety (Temperature Control) Regulations	HMSO	1995	
	Food Safety (General Food Hygiene) Regulations	HSMO	1995	
SI 2451	Gas Safety (Installation and Use) Regulations	HMSO	1998	
SI 917	Health & Safety (First Aid) Regulations	HMSO	1981	
SI 682	Health & Safety (Information for Employees) Regulations	HMSO	1989	
SI 2792	Health and Safety (Display Screen Equipment) Regulations	HMSO	1992	
SI 341	Health and Safety (Safety Signs and Signals) Regulations	HMSO	1996	
SI 1380	Health and Safety (Training for Employment) Regulations	HMSO	1990	
SI 2307	Lifting Operations and Lifting Equipment Regulations (LOLER)	HMSO	1998	
SI 3242	Management of Health and Safety at Work Regulations	HMSO	1999	
SI 2793	Manual Handling Operations Regulations	HMSO	1992	
SI 3017	The Medical Devices Regulations	HMSO	1994	
SI 1790	Noise at Work Regulations	HMSO	1989	
SI 2225	The Notification of Cooling Towers and Evaporative Condensers Regulations	HMSO	1992	
SI 3139	Personal Protective Equipment (EC Directive) Regulations	HMSO	1992	
SI 2966	Personal Protective Equipment at Work (PPE) Regulations	HMSO	1992	
SI 2169	The Pressure Systems and Transportable Gas Containers Regulations	HMSO	1989	
SI 574	The Private Water Supplies (Scotland) Regulations	HMSO	1992	
	The Public Health (Notification of Infectious Disease) (Scotland) Regulation	HMSO	1988	
	The Public Health Act (Infectious Disease) Regulations	HMSO	1975	
SI 2306	Provision and Use of Work Equipment Regulations (PUWER)	HMSO	1998	

Version 1.0: December 1999

Publication ID	Title	Publisher	Date	Notes
SI 3163	Reporting of Injuries, Diseases and Dangerous Occurrences Regulations (RIDDOR)	HMSO	1995	
SI 1333	The Water Supply (Water Quality) (Scotland) Regulations (amendment)	HMSO	1991	
SI 3004	Workplace (Health, Safety and Welfare) Regulations	HMSO	1992	
British Stand	ards			
BS 6700	Specification for design, installation, testing and maintenance services supplying water for domestic use within buildings and their curtilages	BSI Standards	1997	
BS 7206	Specification for unvented hot water storage units and packages	BSI Standards	1990 (1997)	
BS 6920	Suitability of non-metallic products for use in contact with water intended for human consumption with regard to their effect on water quality	BSI Standards	1996	
BS 7592	Sampling for Legionellae organisms in water and related materials	BSI Standards	1992	
European Un	ion Directives			
80/778/EEC	The Quality of Water Intended for Human Consumption	EEC		
Scottish Heal	th Technical Guidance			
SHTM 2005	Building management systems	EEF	1999	CD-ROM
SHTM 2023	Access and accommodation for engineering services	EEF	1999	CD-ROM
SHTM 2024	Lifts	EEF	1999	CD-ROM
SHTM 2025	Ventilation in healthcare premises	EEF	1999	CD-ROM
SHTM 2027	Hot and cold water supply, storage and mains services	EEF	1999	CD-ROM
SHGN	'Safe' hot water and surface temperatures	EEF	1999	CD-ROM
SHPN 1	Health service building in Scotland	HMSO	1991	
SHPN 2	Hospital briefing and operational policy	HMSO	1993	
SHTN 1	Post commissioning documentation for health buildings in Scotland	HMSO	1993	
SHTN 2	Domestic hot and cold water systems for Scottish Health Care Premises	EEF	1999	CD-ROM
SHTN 4	General Purposes Estates and Functions Model Safety Permit-to-work Systems	EEF	1997	

Version 1.0: December 1999

Publication ID	Title	Publisher	Date	Notes
	NHS in Scotland – Scotconcode	EEF	1999	Version 3
	Scottish Infection Manual: Guidance on core standards for the control of infection in hospitals, healthcare premises and at the community interface			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NHS in Scotla	and Firecode			
HTM 81	Fire precautions in new hospitals	EEF	1998	CD-ROM
HTM 82	Alarm and detection systems	EEF	1998	CD-ROM
HTM 83	Fire safety in healthcare premises: general fire precautions	EEF	1998	CD-ROM
HTM 84	Fire safety in NHS residential care properties	EEF	1998	CD-ROM
HTM 85	Fire precautions in existing hospitals	EEF	1998	CD-ROM
HTM 86	Fire risk assessment in hospitals	EEF	1998	CD-ROM
HTM 87	Textiles and furniture	EEF	1998	CD-ROM
Fire Practice Note 3	Escape bed lifts	EEF	1998	CD-ROM
Fire Practice Note 4	Hospital main kitchens	EEF	1998	CD-ROM
Fire Practice Note 5	Commercial enterprises on hospital premises	EEF	1998	CD-ROM
Fire Practice Note 6	Arson prevention and control in NHS healthcare premises	EEF	1998	CD-ROM
Fire Practice Note 7	Fire precautions in patient hotels	EEF	1998	CD-ROM
Fire Practice Note 10	Laboratories on hospital premises	EEF	1998	CD-ROM
UK Health Te	chnical Guidance			
EH 40	HSE Occupational Exposure limits	HSE	Annual	
MES	Model Engineering Specifications	NHS Estates	1997	As required
)	The colonisation of water in United Kingdom transplant units with Legionella bacteria and Protozoa and the risk to patients	HEEU	1995	
	Pseudomonas Aeruginosa in whirlpool baths	HEEU	1997	

Version 1.0: December 1999

S'

Publication ID	Title	Publisher	Date	Notes			
Public Health	Public Health Laboratory Services						
	Spa pool working party	PHLS	1994				
	Hygiene for hydrotherapy pools	PHLS	1990				
	Hygiene for spa pools: guidance for their safe operation	PHLS	1				
Miscellaneou	s References						
	Model Water Byelaws: Dept. of the Environment	HMSO	1986				
	Chemical Disinfection in Hospitals (second edition)	PHLS	1993				
	Water Byelaws Scheme's (WBS) Water Fittings and Materials Directory (WFMD).						
	Department of rehabilitation: a design guide	DHSS	1974				
	The central sterilization club, hygiene for hydrotherapy pools	PHLS	1990				
	A guide to pre-commission cleaning of water systems	BSRIA	1991				